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A l ~ t r a e t ~ n  the basis of a brief review of the continuum theory for macroscopic descriptions and the 
kinetic theory for microscopic descriptions in solid/liquid two-phase flows, some suggestions are presented, 
i.e. the solid phase may be described by the Boltzmann equation and the liquid phase still be described 
by conservation laws in the continuum theory. Among them the action force on the particles by the liquid 
fluid is a coupling factor which connects the phases. For dilute steady solid/liquid two-phase flows, the 
particle velocity distribution function can be derived by analogy with the procedures in the kinetic theory 
of gas molecules for the equilibrium state instead of being assumed, as previous investigators did. This 
done, more detailed information, such as the velocity probability density distribution, mean velocity 
distribution and fluctuating intensity etc. can be obtained directly from the particle velocity distribution 
function or from its integration. Experiments have been performed for dilute solid/liquid two-phase flow 
in a 4 x 6 cm 2 sized circulating square pipe system by means of laser Doppler anemometry so that the 
theories can be examined. The comparisons show that the theories agree very well with all the measured 
data. 
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I.  I N T R O D U C T I O N  

A lot of problems are related to two-phase flows, and so various theories have been developed to 
describe them. Generally speaking, a solid/liquid two-phase flow system can be described either in 
terms of a macroscopic or microscopic method, or the continuum theory (Soo 1967; Marble 1970; 
Ishii 1975; Pal 1977; Drew 1983 etc.) or the kinetic theory (Marble 1963; Culic 1964; Pai 1971, 1977; 
Ishii 1975; Liu 1987; Wang 1989 etc.). Among the cited work using the kinetic approach, Pai's 
(1971, 1977) was prominent. In his work, special attention was paid to the solid/gas two-phase flows 
and both the motion of the gas molecules and the solid particles are described by the Boltzmann 
equation, in which either collisions of similar particles (e.g. those of solid particles or of gas 
molecules) or those between solid particles and gas molecules are included in the r.h.s, collision 
term. In addition, the force between solid particles and gas molecules is also included in the force 
term given on the l.h.s, of the equation. In fact, the interactions between phases should not be 
included repeatedly. Furthermore, noting that the kinetic theory for microscopic descriptions is 
primarily used in the study of molecular movement in single gas phase flows or that of gas/solid 
two-phase flows and the successful applications of the macroscopic method in fluid mechanics, 
perhaps a worthwhile investigation would be to introduce the kinetic theory into the study of 
solid/liquid two-phase flow by analogy, i.e. each solid particle can be taken as analogous to a 
molecule of gas in gas kinetic theory and be described by the Boltzmann equation. This makes us 
consider the possibility of utilizing the continuum theory for the liquid phase and the kinetic theory 
for the solid phase in solid/liquid two-phase flows. The reasons are as follows: 

(l) The continuum theory, as the term suggests, demands that numerous particles 
(or molecules) be included in a micelle, which is basically reasonable for the 
liquid fluid because of its small-sized molecules. For the solid particles in 
two-phase flow, we have no sound reasoning to use the continuum model if the 
large dimensions of the particles are considered. 

(2) The development of the basic equations in continuum theory is often related to 
some mean methods. In such a way, additional unknown correlation terms will 
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be introduced and this will make the problems more difficult to solve, especially 
for solid/liquid flows. 

(3) When the particle concentrations are high, the interactions among the particles 
become more and more important and they must be considered, but the 
traditional continuum theory itself can not tell us how the particles affect each 
other and we have to resort to other theories. 

The dilemma mentioned above could be resolved more or less by making us of the microscopic 
kinetic theory. Firstly, as an initial approximate, the equations of the continuum theory can be 
derived from the Boltzmann equation of the kinetic theory. Moreover, detailed information on the 
particle transportation coefficients, which are taken as state parameters in the continuum theory, 
such as viscosity and heat conduction coefficients etc., can be obtained from the Boltzmann 
equation just as those given in the kinetic theory of gases. Secondly, a striking advantage of the 
kinetic theory is that fewer unknown parameters will be introduced by this theory, from which more 
microscopic parameters can be obtained. For example, parameters such as the probability density 
distribution of particle velocity are usually not involved in the continuum theory, but such 
parameters can be readily obtained from the Boltzmann equation. Thirdly. solid particles with any 
physical properties can be included because the object of study in the kinetic theory is solely the 
kinetic characteristics of individual particles. Finally, a problem involved by the kinetic theory, the 
action of collisions which becomes a principal factor for two-phase flow with high particle 
concentrations, is dealt with by the Boltzmann equation. 

Although the kinetic theory has the advantages expounded above, little work (Lourenco et al. 
1983; Wang & Ni 1990) has been performed due to the difficulties in the mathematics. Based on 
the above discussions, a study on dilute solid/liquid two-phase flow with a combination of the 
kinetic theory and the continuum theory was made as described below. 

2. BASIC EQUATIONS OF S O L I D / L I Q U I D  TWO-PHASE FLOW 

The basic equations of solid/liquid two-phase flow consist of the Boltzmann equation in the 
kinetic theory for the particles and the conservation equations in the continuum theory for the 
liquid fluid. Among them the Boltzmann equation is expressed as 

~ + v . ~ + ~ .  if'f)= [I] ¢ '  

in which, f =f(v,  x, t) represents the particle velocity distribution function, which is a function of 
the particle stochastic velocity v, the spatial coordinate x and time t; F represents the unit mass 
external forces on a particle, including both the gravitational force g and the action force on the 
particle by the liquid phase; the r.h.s, of the equation is a collision term reflecting the influences 
of the collisions between the particles on the velocity distribution function of the particles. 

Once the velocity distribution function f is known, all the macroscopic statistical mean 
parameters for the particle movement will be determined correspondingly, e.g. the particle numbers 
per unit volume 

n = f f  dv, [2] 

which is connected with the volumetric particle concentration C and the particle phase density by 
the relations C = n/6D3n and ~p = mn, respectively. Here D is the particle diameter and m is the 
mass, the particle mean velocity is expressed as 

v p  = - d r ,  [31 
n 

then: the particle fluctuating velocity Vp becomes 

Vp = v - vp; [4] 
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the mean square value of  Vv can be written in the form 

1 f ( v  - vv)" (v - vp)f dv; [5] ~ = 

and the stress tensor for the particle fluctuation is 

pp = m fvpvpfdv; [6] 

OP, in turn, can be divided into two parts which are defined as the pressure stress tensor pv and 
the shear stress tensor ~p, i.e. 

= ~ m V ~ f d v  [7] PP 
J 

and 

Cv = pe I - pv, [8] 

where Y~, = Vv. Vp and I is the unit tensor. 
In addition, the total external force on the particles per unit volume is 

fivFe = m f F f d v ,  [9] 

which consists of the total gravitational force/Seg per unit volume and the total action force of 
the liquid fluid, or, the interaction force between the phases: 

Mp = m yE/ 'dv  - ~pg. [10] 

In the above mentioned formulae, the integral space is dv = dv~ dr2 dye, the subscript "P"  represents 
the particle phase. 

In view of the successful applications of the continuum theory to the problems of single-phase 
flow, the liquid fluid can still be described by the conservation laws in the continuum theory, such 
as the mass conservation equation, 

?~pt(l -- C) 
+ v .  [(I - C ) p L u ~ . ]  = 0 ,  [1 l]  

~t 

and the momentum conservation equation, 

a5 [ p L ( I  - -  C )UL]  ~- V ' [ ( l  - -  C)pLIILUt. ] = --V[(I --  C ) P L ]  

+ V . [ ( I - C ) ( ~ L + , ~ ) ] + ( I - C ) p L g + M L .  [12] 

Here the subscript " L "  represents the liquid phase, UL is the mean fluid velocity, PL is the fluid 
density, PL is the pressure stress, rL is the mean viscous stress, ML = -- Mp represents the momentum 
transmission between the phases, or, the interaction force between the phases and r~ is the 
fluctuating stress tensor of the liquid phase, which is expressed as 

T~-:- - - p L  U~ U~.. [13] 

Here the symbol " ~ "  represents the volumetric mean value. 
The liquid phase in two-phase flow is often considered as incompressible, i.e. PL is a constant. 

In such a case, solving the problems of the motion of  solid/liquid two-phase flow means finding 
solutions of  the series equations mentioned above under some given initial and boundary 
conditions. Owing to the complex nature of  the problems, it is only possible to obtain explicit 
solutions for some special cases, which is what we try to do below. 
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3. THE PARTICLE VELOCITY DISTRIBUTION FUNCTION 
FOR TWO-PHASE FLOW 

For dilute steady flow conditions, the effect of the collisions represented by (af/dt)c in [1] is so 
small that it can be neglected without obvious inaccuracies, and thus the Boltzmann equation is 
simplified to 

Of .  
v ' ~ x  + ~vv" (Ff)  = 0. [141 

In this case, by analogy with the procedures in the kinetic theory of gas molecules we can easily 
obtain the particle velocity distribution function with the variational method. According to Wang 
& Ni (1990), an H-function for the particles may be defined in a similar manner to that used in 
the kinetic theory of gases: 

H = I f ln fdv ,  [15] 

in which dv = dr, dr2 dr3. For the equilibrium state, a minimum H is expected. Thus, a variation 
equation is given as 

6H = 6 _ f f l n f d v  =0 ,  [16] 

whose additional conditions consist of: the conservation condition of the particle number per unit 
volume, 

6n = 6 I f  dr = 0; [17] 
J 

the conservation of momentum, 

and the conservation of kinetic energy, 

6 f m v f d v  = 0; [18] 

f" 
(5 |}mv- ' f  dv = 0. [191 

With [17] multiplied by a Lagrange operator 2'( = 2 + 1) and the scalar product of [18] and the 
vector (l/m)b, which is independent of v, and also with [19] multiplied by another operator fl, the 
variational result becomes 

f =  exp(). + b '  v - / m / 3 v 2 )  

= exp(2 + b,v, - ~mfl t  '2) 

= A exp(2 - ~mfl V2), [20] 

where V 2 = Z(v~- Vo~) 2, the square value of the particle peculiar velocity, Vo~ = b,/m/3, is the reference 
characteristic velocity of the particles, A = exp[~m/3(v02~ + v022 + v023)] and ~. is defined as 

= f m/3F.dx =m/J f F, dx,, [21] 

from [20] and [14]. Therefore, five unknown parameters, i.e. A, t'0~(i = 1, 2, 3) and/3, remain to be 
determined in [20]. 

For a simple two-dimensional flow, the comprehensive unit mass action force on a particle in 
either the x- or y-direction is expressed in the following form: 

F = 3c,,p  
4 D pp Ivc - vl(v,, - th ) [22] 

F~ = 3 C~ PL (rE, _ V, )2 _ 1 - g. [23] 
4D Pd 
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Here Ca and C~ are comprehensive drag coefficients corresponding to Fx and Fy, respectively; D 
is the particle diameter; pp is the density of  the particles and PL is the density of the fluid; v is the 
particle stochastic velocity and v~ is its component in the x-direction; v L represents the fluid 
stochastic velocity and VL~ is the x-direction component of v L. 

In order to give an explicit solution for the velocity distribution function of  the particles, we have 
to make some approximations. For  example, the stochastic velocity v L should be replaced by the 
mean velocity UL. Note that the comprehensive force on a particle principally consists of the drag 
force and the pressure gradient force in opposite directions, the statistically averaged F x should be 
zero under two-dimensional flow conditions. As an initial approximation of  two-dimensional dilute 
steady shear flows, the motion of the particles, on average, can be taken as in either the steady 
or equilibrium state. In this case, the virtual mass force and Basset force are relatively small. For 
the sake of simplicity, these forces can be neglected. If we make another assumption, that (U L - -  lYl )2 

is irrelevant to the coordinate y, then we have 

f F, dx = C, [24] 

and 

F ,  d y  = - -  - -  l - -  + C 2 .  t 2 5 ]  
Pv./ 

In which, C~ and C2 are two integral constants which are determined according to the initial and 
boundary conditions. Finally, the particle velocity distribution function is obtained by combining 
the six relations [20]-[25], i.e. 

f = A e x p  mE ~ C ~  ~ -  1 -  + C , + C 2  -¼mEZ(v~-v~o)2 . [26] 
PP/ 

4. C O M P A R I S O N S  BETWEEN THE T H E O R I E S  AND E X P E R I M E N T A L  RESULTS 

The experiments were performed in a 4 × 6 cm 2 sized square pipe system by means of laser 
Doppler anemometry (LDA) so as to test the theories presented in this paper. In the horizontally 
equipped square pipe with transparent side walls, clear water is first injected from the intake and 
the LDA is fixed at a distance of  5 m from it at the same level as the horizontal pipe. Particles 
also enter through the intake and then circulate with the water with the help of a self-designed jet 
pump in the end. The range of Reynolds number is Re = (8.3-18) x 103 for all the experiments. 
Using this apparatus a lot of measured data on the particle and fluid mean velocity distribution, 
the velocity probability density distribution and the particle concentration distribution were 
obtained, only some of them are used here due to the limited length of  the paper; some 
characteristics relating to the experiments are given in table 1. 

The measured results show that the fluid mean velocity distribution in dilute two-phase flows 
can be well-described by the revised formula of  single liquid phase flow presented by Dou (1987): 

This implies that the influence of the particle concentration on the fluid characteristics is very low 
for dilute flows. Here H is the half depth of  the square pipe, v is the kinetic viscosity coeffcient 
and u, is the shear velocity. 

Now we return to discuss the particle velocity distribution function as shown in [26] with 
measured data. Noting that the relation between the kinetic energy ½rag V~ of the molecular heat 
movement, the temperature T and the parameter fl is 

3 
~mc V~ = ~ T  = 2---~ [28] 
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Table 1. Characteristics of fluid and particles 

Particle Particle Settling Shear 
diameter, density, velocity, velocity, Concentration, 

Run D p oJ u. C 
No. (mm) (g/cm ~) (cm/s) (cm/s) (%) 

472 1.10 1.60 6.15 6.95 0.06 
473 1.10 1.60 6.15 7.41 0.1 I 
474 1.10 1.60 6.15 7.23 0.24 
542 0.85 1.60 4.51 4.86 0.41 
543 0.85 1.60 4.51 4.34 0.46 
561 0.85 1.60 4.51 6.22 0.12 
562 0.85 1.60 4.51 6.62 0.17 
563 0.85 1.60 4.51 6.33 0.19 
564 0.85 1.60 4.51 6.25 0.38 
571 0.85 1.60 4.51 7.16 0.04 
572 0.85 1.60 4.51 7.34 0.14 
573 0.85 1.60 4.51 7.18 0.16 
631 0.60 1.60 3.79 3.38 0.01 
632 0.60 1.60 3.79 3.57 0.01 
633 0.60 1.60 3.79 3.37 0.08 
642 0.60 1.60 3.79 4.90 0.06 
643 0.60 1.60 3.79 4.95 0.14 
661 0.60 1.60 3.79 6.23 0.04 
662 0.60 1.60 3.79 6.21 0.05 

in the kinetic theory of gases (here k is the Boltzmann constant), and that the dimensions of the 
parameter i/mfl should be the square of a velocity, we can assume a relation for the turbulent shear 
flow in which no heat movement exists. Generally speaking, the analogy between V~ and V~ is 
a reasonable one. Thus, noting the same orders of  magnitude for V~, and the shear velocity u. in 
dilute solid/liquid two-phase shear flows along the vertical (Ni eta/. 1990), a good approximation 
can be made for the sake of simplicity, or 

m]~ = u-~,' [291 

in which a is a dimensionless coefficient. In addition, theoretically the range of particle stochastic 
velocity is ( - o~, + co) and the velocity distribution function will be reduced to zero as t, --, + ~c. 
Taking into consideration all previous relations, [26] can be expressed as 

f ' It f = A . e x p - u ~  * pd-~(Cd-C,~l ) (u t . -v .  + i ~ ( r , - t , 0 , )  2 , [30] 

O- 
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Figure I. Comparisons between the measured and calculated probability density distributions of particle 
velocity (I). 
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in which 

and r /= y/H, Ca = 0.4 and Ct = 0.2 Ca. Moreover, three components vi, v2 and v3 are included in 
[30], but the mean flow exists only in the x-direction for two-dimensional flows. Thus, finding the 
integrals for the whole space of v2 and v3 successively, we obtain 

o t 3 p L H ~  C, _Vo, )2]} [32] 

Here A2 = (2n/raft)A j, which can be determined from the particle numbers per unit volume, as 
defined in [2], and [32] thus becomes 

f=nexp{--2fut~T3pLH\-~.} L~ ~ -~ Ca ( 1 -  ~ r/)(1 - u)2 + (u - uo)2]} 

, , . ,  k z p, z) \ -- -caCt~l)(l-u)2+(u-uo)2]}du, [33] 

in which u = v,/UL and Uo = Vol/UL. The parameters ~t and Uo must be determined from the measured 
data and they are expressed as 

( ~ )  r/ [34, ~t--0.2 1+0.22 l + r /  

u0=0.3(0 .45+0.1  ux/~H ) l + r /  [35] 

1+1 .6  ~ 

Here to is the settling velocity of a particle. In figures 1 and 2, the comparisons between the 
probability density distribution and the theoretical results of P(u) = (l /n)fare given at two points 
for each vertical, i.e. at y -- 2.8 and y -- 20.3 ram. We can see that good agreement between the 
theoretical and experimental results has been achieved. 

With a given particle velocity distribution function, the particle mean velocity up can be found 
easily by the relation 

uLu--~=lf+f ufdun- _ [36] 
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Figure 2. Comparisons between the measured and calculated probability density distributions of particle 
velocity (II). 

LIMF 17/2-- 1 
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Figure 3. Test of [27] and [361. 

A test of [27] and [36] with the measured data is shown in figure 3 and satisfactory agreements 
are also achieved for both the liquid phase (--)  and the solid phase (. . .) .  

5. C O N C L U S I O N  

Both theories and experiments on solid/liquid two-phase flow have been discussed, and the main 
conclusions drawn are as follows: 

(1) For dilute two-phase flows, the solid phase may be described by the kinetic theory 
and the liquid phase still be described by the continuum theory. 

(2) By analogizing the treatments in the kinetic theory of gas molecules for the 
equilibrium state, the particle velocity distribution function can be derived for 
steady two-dimensional flows. 

(3) Once the particle velocity distribution function is given, the particle mean velocity 
distribution is readily calculated from [36]. 

(4) All relations given in this paper agree very well with the measured data by means 
of LDA. 
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